Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

ESTRATEGIAS, MERCADOS E INSTITUCIONES FINANCIERAS

Vol. 8 Núm. 1 (2014): Innovación y competitividad. Impulsores del desarrollo. ISBN: 978-607-96203-0-3

Aplicación teórica del método Holt-Winters al problema de credit scoring de las instituciones de microfinanzas

Enviado
diciembre 5, 2016
Publicado
2018-01-08

Resumen

El incremento de las instituciones de microfinanzas (IMF) en México ha aumentado la competencia entre estas instituciones para incrementar su participación de mercado. No obstante las IMF deben de valorar de manera adecuada el otorgamiento de créditos a sus clientes potenciales. Que los posibles clientes puedan pagar o no sus créditos depende directamente de los flujos de efectivo que generen por sus operaciones. En este trabajo se hace una revisión de la literatura de los trabajos más relevantes sobre los diferentes modelos de credit scoring y se propone una metodología teórica para analizar el riesgo de crédito en la concesión de microcréditos a partir de los flujos de efectivo esperados haciendo énfasis en la estacionalidad que dichos flujos presentan. Para ello, se emplea el método Holt-Winters, que es un modelo de pronóstico no lineal, con el fin de predecir el riesgo que un cliente pague un préstamo (Credit Scoring).

Citas

  1. Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 589-609.
  2. Bajgier, S. & Hill, A. (1982). An experimental comparison of statistical and linear programming approaches to the discriminate problem. Decision Sciences, 604-618.
  3. Bierman, H. & Hausman., W. (1970). The credit granting decision. Management Science, B519– B532.
  4. Bluhm, C., Overbeck, L. & Wagner, C. (2002). An introduction to credit risk modeling. 1ª Ed. Boca Raton, Florida: Chapman & Hall/CRC.
  5. Bonfim, D. (2009). Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics. Journal of Banking and Finance, 281-299.
  6. Boyes, W., Hoffman, D. & Low, S. (1989). A econometric analysis of the bank credit scoring problem. Journal of Econometrics, 3-14.
  7. Campbell , T. & Dietrich, J. (1983). The determinants of default on insured conventional residential mortgage loans. The Journal of Finance, 1569-1581.
  8. Carter, C. & Carlett, J. (1987). Assessing credit card applications using machine learning. IEEE Expert. Fall, 71-79.
  9. Cheung, S. (1996). Provincial credit ratings in Canada: An ordered probit analysis. Working Paper Bank of Canada.
  10. Davis, R., Edelman, D. & Gammerman, A. (1992). Machine-learning algorithms for credit-card applications. Journal of Management Mathematics, 43-51.
  11. Dinh, T. & Kleimeier , S. (2007). A credit scoring model for Vietnam’s retail banking market. International Review of Financial Analysis, 471-495.
  12. Durand, D. (1941). Risk elements in consumer instalment financing. Massachusetts: NBER Books. Falbo, P. (1991). Credit-scoring by enlarged discriminant models. Omega, 275–289.
  13. Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 179-188.
  14. Friedman, J. (1977). A recursive partitioning decision rule for nonparametric classification. IEEE Transaction on Computer, 404-509.
  15. Giesecke, K. (2004). Credit risk modeling and valuation: an introduction. Paper of School of Operations Research and Industrial Engineering. Cornell University.
  16. Glover, F., Keene, S. & Duea , B. (1988). A new class of models for the discriminant problem. Decision Sciences, 269-280.
  17. Hand, D. & Henley, W. ( 1997). Statistical classification methods in consumer credit scoring: A review. Journal of the Royal Statistical Society, 523-541.
  18. Hand, D. (1981). Discrimination and classification. Chichester, UK: Wiley.
  19. Kim, J. (2005). A credit risk model for agricultural loan portfolios under the new basel capital accord. Dissertation submitted to the Office of Graduate Studies of Texas A&M University.
  20. Kolesar, P. & Showers, J. (1985). A robust credit screening model using categorical data. Management Science, 123-133.
  21. Kulkosky, E. (1996). Credit scoring could have a downside, experts say. American Banker, 161.
  22. Lam, K., Choo, E. & Moy, J. (1996). Minimizing deviations from the group mean: A new linear programming approach for the two-group classification problem. European Journal of Operational Research, 358-367.
  23. Lawrence, E. & Arshadi, N. (1995). A multinomial logit analysis of problem loan resolution choices in banking. Journal of Money, Credit and Banking, 202-216.
  24. Lee, T., Chiu, C., Lu, C. & Chen, I. (2002). Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications, 245-254.
  25. Makowski, P. (1985). Credit scoring branches out: decision tree-recent technology. Credit World, 30-37.
  26. Marais, M., Patell, J. & Wolfson, M. (1984). The experimental design of classification models: an application of recursive partitioning and bootstrapping to commercial bank loan classifications. Journal of Accounting Research, 87-114.
  27. Milena, E., Miller, M. & Simbaqueba, L. (2005). The case for information sharing by microfinance institutions: empirical evidence of the value of credit bureau-type data in the nicaraguan microfinance sector. New York: The World Bank, mimeo.
  28. Miller, M. & Rojas, D. (2005). Improving access to credit for smes: an empirical analysis of the viability of pooled data sme credit scoring models in Brazil, Colombia & Mexico. New York: The World Bank.
  29. Myers, J. & Forgy, E. (1963). Development of numerical credit evaluation systems. Journal of American Statistical Association, 797-806.
  30. Orgler, Y. (1970). A credit scoring model for commercial loans. Journal of Money, Credit & Banking, 435-445.
  31. Plotnicki, B. (2005). Modelo de comportamiento y predicción de incumplimiento crediticio: el caso de empresas pyme en argentina. Temas de Management, 15-19.
  32. Ripley, B. (1994). Neural networks and related methods for classification. Journal of the Royal Statistical Society, 409-456.
  33. Schreiner, M. (1999). A scoring model of the risk of costly arrears at a microfinance lender in Bolivia. Microfinance Risk Management and Center for Social Development.
  34. Schreiner, M. (2000). Credit scoring for microfinance: Can it work? Microfinance Risk Management and Center for Social Development.
  35. Showers, S. & Chakrin, L. (1981). Reducing uncollectable revenue from residential telephone customers. Interfaces, 21-31.
  36. Steenackers, A. & Goovaerts, M. (1989). A credit scoring model for personal loans. Insurance: Mathematics and Economics, 31-34.
  37. Tsaih, R., Liu, J. & Lien, Y. (2004). Credit scoring system for small loans. Decision Support System, 91-99.
  38. Viganò, L. (1993). A credit-scoring model for development banks: An African case study. Savings and Development, 441-482.
  39. Wiginton, J. (1980). A note on the comparison of logit and discriminant models of consumer credit behavior. Journal of Financial and Quantitative Analysis, 757-770.
  40. Winters, P. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 324-342.
  41. Yang, Y., Nie, G. & Zhang, L. (2005). Retail exposures credit scoring models for chinese commercial banks. En A. E. Al., Computational Science (633-642). Berlin: Springer Berlin Heidelberg.

Artículos más leídos del mismo autor/a

> >>