Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Innovación tecnológica y datos

Vol. 17 (2023): Resiliencia, valor de la innovación y sostenibilidad como ejes para la competitividad ISBN 978-607-96203-0-12

Análisis del impulso a la competitividad en el mercado energético de la producción y uso de hidrogeno verde

Enviado
febrero 8, 2024
Publicado
2024-02-29

Resumen

Ante la creciente necesidad de recursos energéticos en el mundo, y debido a los altos índices de contaminación que son asociados precisamente a los combustibles utilizados como fuente energética necesarios para el desarrollo de los países en materia de transporte, maquinaria, generación de electricidad, entre otras actividades, que están basados en combustibles fósiles (principalmente petróleo), se ha impulsado la producción de Hidrógeno como una alternativa eficiente y limpia, aunque con algunas agravantes debidas a su proceso de producción. En este trabajo se exploran algunos proyectos lanzados en el mundo, dando énfasis a los implementados en México, y se aportan los detalles técnicos y económicos asociados a la producción, almacenamiento y transporte de Hidrógeno como recurso energético. Se obtendrán algunos datos de tipo estadístico y análisis de variables de medición macroeconómica que son parte de un estudio en materia de competitividad en el mercado energético.

Citas

  1. Armijo, J., y Philibert, C. (2020). Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. International Journal of Hydrogen Energy, 45(3), 1541-1558.
  2. Cesaro, Z., Ives, M., Nayak-Luke, R., Mason, M., y Bañares-Alcántara, R. (2021). Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants. Applied Energy, 282, 116009.
  3. De la Cruz-Soto, J., Azkona-Bedia, I., Velazquez-Limon, N., y Romero-Castanon, T. (2022). A technoeconomic study for a hydrogen storage system in a microgrid located in baja California, Mexico.Levelized cost of energy for power to gas to power scenarios. International Journal of Hydrogen Energy, 47(70), 30050-30061.
  4. Demir, M. E., y Dincer, I. (2018). Cost assessment and evaluation of various hydrogen delivery scenarios.
  5. International Journal of Hydrogen Energy, 43(22), 10420-10430.
  6. Gallardo, F. I., Ferrario, A. M., Lamagna, M., Bocci, E., Garcia, D. A., y Baeza-Jeria, T. E. (2021). A TechnoEconomic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan.
  7. International Journal of Hydrogen Energy, 46(26), 1370913728.
  8. Grube, T., Reul, J., Reuß, M., Calnan, S., Monnerie, N., Schlatmann, R., ... y Stolten, D. (2020). A technoeconomic perspective on solar-to-hydrogen concepts through 2025. Sustainable energy y fuels, 4(11), 5818-5834.
  9. Hwang, J., Maharjan, K., y Cho, H. (2023). A review of hydrogen utilization in power generation and transportation sectors: Achievements and future challenges. International Journal of Hydrogen Energy.
  10. IEA International Energy Agency. (2019). The Future of Hydrogen, Seizing today’s opportunities. Report prepared by the IEA for the G20, Japan.
  11. Public Report IEA International Energy Agency. (2020). World energy investment 2020. Technical Report.
  12. IEA International Energy Agency. (2021). Global Hydrogen Review 2021. Public Report.
  13. IEA International Energy Agency. (2021).Hydrogen in Latin America, From near-term opportunities to largescale deployment.
  14. Technical Report. Ikäheimo, J., Kiviluoma, J., Weiss, R., y Holttinen, H. (2018). Power-to-ammonia in future North European 100% renewable power and heat system. International Journal of Hydrogen Energy, 43(36), 1729517308.
  15. Ikäheimo, J., Kiviluoma, J., Weiss, R., y Holttinen, H. (2018). Power-to-ammonia in future North European 100% renewable power and heat system. International Journal of Hydrogen Energy, 43(36), 1729517308.
  16. IRENA (2018). Global Energy Transformation: A roadmap to 2050. International Renewable Energy Agency, Abu Dhabi. IRENA and AEA (2022). Innovation Outlook: Renewable Ammonia.
  17. International Renewable Energy Agency, Abu Dhabi, Ammonia Energy Association, Brooklyn. IRENA, International Renewable Energy Agency. (2019). Hydrogen: A Renewable Energy Perspective–Report prepared for the 2nd Hydrogen Energy Ministerial Meeting in Tokyo.
  18. Juárez-Casildo, V., Cervantes, I., y González-Huerta, R. D. G. (2022). Solar hydrogen production in urban areas of Mexico: towards hydrogen cities. International Journal of Hydrogen Energy, 47(70), 30012-30026. 210
  19. Kannah, R. Y., Kavitha, S., Karthikeyan, O. P., Kumar, G., Dai-Viet, N. V., y Banu, J. R. (2021).Technoeconomic assessment of various hydrogen production methods–A review. Bioresource technology, 319, 124175.
  20. Keeley, A. R., Takeda, S., y Managi, S. (2022). A systematic review of the techno-economic assessment of various hydrogen production methods of power generation. Frontiers in Sustainability, 3, 943145.
  21. Khouya, A. (2020). Levelized costs of energy and hydrogen of wind farms and concentrated photovoltaic thermal systems. A case study in Morocco. International Journal of Hydrogen Energy, 45(56), 3163231650.
  22. Kumar, S. S., y Himabindu, V. (2019). Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2(3), 442-454.
  23. Minutillo, M., Perna, A., Di Trolio, P., Di Micco, S., y Jannelli, E. (2021). Techno-economics of novel refueling stations based on ammonia-to-hydrogen route and SOFC technology. International Journal of Hydrogen Energy, 46(16), 10059-10071.
  24. Minutillo, M., Perna, A., Forcina, A., Di Micco, S., y Jannelli, E. (2021). Analyzing the levelized cost of hydrogen in refueling stations with on-site hydrogen production via water electrolysis in the Italian scenario. International Journal of Hydrogen Energy, 46(26), 13667-13677.
  25. Mostafaeipour, A., Rezayat, H., y Rezaei, M. (2020). A thorough investigation of solar-powered hydrogen potential and accurate location planning for big cities: A case study. International Journal of Hydrogen Energy, 45(56), 31599-31611.
  26. Otto, M., Chagoya, K. L., Blair, R. G., Hick, S. M., y Kapat, J. S. (2022). Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation.
  27. Journal of Energy Storage, 55, 105714. Palacios, A., Cordova-Lizama, A., Castro-Olivera, P. M., y Palacios-Rosas, E. (2022). Hydrogen production in Mexico: State of the art, future perspectives, challenges, and opportunities. International Journal of Hydrogen Energy, 47(70), 30196-30212.
  28. Palacios, A., Cordova-Lizama, A., Castro-Olivera, P. M., y Palacios-Rosas, E. (2022). Hydrogen production in Mexico: State of the art, future perspectives, challenges, and opportunities. International Journal of Hydrogen Energy, 47(70), 30196-30212.
  29. Peters, M. S., Timmerhaus, K. D., y West, R. E. (2003). Plant design and economics for chemical engineers Vol. 4.
  30. McGraw-Hill. Rezaei, M., Akimov, A., y Gray, E. M. (2022). Economics of solar-based hydrogen production: Sensitivity to financial and technical factors. International Journal of Hydrogen Energy, 47(65), 27930-27943.
  31. Rouwenhorst, K. H., Van der Ham, A. G., Mul, G., y Kersten, S. R. (2019). Islanded ammonia power systems: Technology review y conceptual process design. Renewable and Sustainable Energy Reviews, 114, 109339.
  32. Schnuelle, C., Wassermann, T., Fuhrlaender, D., y Zondervan, E. (2020). Dynamic hydrogen production from PV y wind direct electricity supply–Modeling and techno-economic assessment. International Journal of Hydrogen Energy, 45(55), 29938-29952.
  33. Warner, S., y Hussain, S. (2022). The Finance Book. Pearson.
  34. Weinand, J. M., Scheller, F., y McKenna, R. (2020). Reviewing energy system modeling of decentralized energy autonomy. Energy, 203, 117817.
  35. Wu, H., Zhang, S., Li, X., Liu, S., y Liang, L. (2022). A multivariate coupled economic model study on hydrogen production by renewable energy combined with off-peak electricity. International Journal of Hydrogen Energy, 47(58), 24481-24492.